The cerebral critical oxygen threshold of ventilated preterm lambs and the influence of antenatal inflammation.

نویسندگان

  • C C Andersen
  • J J Pillow
  • A W Gill
  • B J Allison
  • T J M Moss
  • S B Hooper
  • I Nitsos
  • M Kluckow
  • G R Polglase
چکیده

Perinatal inflammation is associated with adverse neurodevelopmental outcomes, which may be partly due to changes in the cerebral oxygen delivery/consumption relationship. We aimed to determine the critical oxygen delivery threshold of the brain of preterm, ventilated lambs and to determine whether the critical threshold is affected by exposure to inflammation in utero. Pregnant ewes received intra-amniotic injection of lipopolysaccharide or saline at 125 or 127 days of gestation. Pulmonary and systemic flow probes and catheters were surgically positioned in the fetus immediately before delivery at 129 days of gestation. After delivery, lambs were ventilated for 90 min using a positive end-expiratory pressure recruitment strategy. Cardio-respiratory variables and blood gases were measured regularly. Systemic and cerebral oxygen delivery, consumption (Fick), and extraction were calculated, and the relationship between cerebral delivery and consumption analyzed. Linear regression was used to define the transition or "critical" oxygen threshold as the point at which the slope of the oxygen delivery/consumption curve changed to be > 10°. Four subgroups were defined according to the calculated critical threshold. A total of 150 measurements were recorded in 18 lambs. Fetal cerebral oxygen consumption was increased by antenatal lipopolysaccharide (P < 0.05). The postnatal critical oxygen threshold was 3.6 ml·kg⁻¹·min⁻¹, corresponding to cerebral oxygen consumption of 0.73 ml·kg⁻¹·min⁻¹. High oxygen delivery and consumption were associated with increased pulmonary and carotid blood flow and systemic extraction compared with low oxygen delivery and consumption. No postnatal effect of antenatal inflammation was observed. Inflammation in utero increases fetal, but not postnatal, cerebral oxygen consumption. Adverse alterations to pulmonary blood flow can result in reduced cerebral blood flow, oxygen delivery, and consumption. Regardless of exposure to inflammation, there is a consistent postnatal relationship between cerebral oxygen delivery and consumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inflammation in utero exacerbates ventilation-induced brain injury in preterm lambs.

Cerebral blood flow disturbance is a major contributor to brain injury in the preterm infant. The initiation of ventilation may be a critical time for cerebral hemodynamic disturbance leading to brain injury in preterm infants, particularly if they are exposed to inflammation in utero. We aimed to determine whether exposure to inflammation in utero alters cardiopulmonary hemodynamics, resulting...

متن کامل

Chronic lung injury in preterm lambs. Disordered respiratory tract development.

The cause of chronic lung disease of early infancy, often called bronchopulmonary dysplasia (BPD), remains unclear, partly because large-animal models that reliably reproduce BPD have not been available. We developed a model of BPD in lambs that are delivered prematurely and ventilated for 3 to 4 wk after birth to determine whether the histopathology of chronic lung injury in premature lambs mi...

متن کامل

Antenatal and postnatal corticosteroid and resuscitation induced lung injury in preterm sheep

BACKGROUND Initiation of ventilation using high tidal volumes in preterm lambs causes lung injury and inflammation. Antenatal corticosteroids mature the lungs of preterm infants and postnatal corticosteroids are used to treat bronchopulmonary dysplasia. OBJECTIVE To test if antenatal or postnatal corticosteroids would decrease resuscitation induced lung injury. METHODS 129 d gestational age...

متن کامل

Human amnion epithelial cells modulate the inflammatory response to ventilation in preterm lambs

Ventilation of preterm neonates causes pulmonary inflammation that can contribute to lung injury, propagate systemically and result in long-term disease. Modulation of this initial response may reduce lung injury and its sequelae. We aimed to determine the effect of human amnion epithelial cells (hAECs) on immune activation and lung injury in preterm neonatal lambs. Preterm lambs received intra...

متن کامل

Protective Ventilation of Preterm Lambs Exposed to Acute Chorioamnionitis Does Not Reduce Ventilation-Induced Lung or Brain Injury

BACKGROUND The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 111 3  شماره 

صفحات  -

تاریخ انتشار 2011